RNA CoSSMos: Characterization of Secondary Structure Motifs—a searchable database of secondary structure motifs in RNA three-dimensional structures
نویسندگان
چکیده
RNA secondary structure is important for designing therapeutics, understanding protein-RNA binding and predicting tertiary structure of RNA. Several databases and downloadable programs exist that specialize in the three-dimensional (3D) structure of RNA, but none focus specifically on secondary structural motifs such as internal, bulge and hairpin loops. The RNA Characterization of Secondary Structure Motifs (RNA CoSSMos) database is a freely accessible and searchable online database and website of 3D characteristics of secondary structure motifs. To create the RNA CoSSMos database, 2156 Protein Data Bank (PDB) files were searched for internal, bulge and hairpin loops, and each loop's structural information, including sugar pucker, glycosidic linkage, hydrogen bonding patterns and stacking interactions, was included in the database. False positives were defined, identified and reclassified or omitted from the database to ensure the most accurate results possible. Users can search via general PDB information, experimental parameters, sequence and specific motif and by specific structural parameters in the subquery page after the initial search. Returned results for each search can be viewed individually or a complete set can be downloaded into a spreadsheet to allow for easy comparison. The RNA CoSSMos database is automatically updated weekly and is available at http://cossmos.slu.edu.
منابع مشابه
Relation Between RNA Sequences, Structures, and Shapes via Variation Networks
Background: RNA plays key role in many aspects of biological processes and its tertiary structure is critical for its biological function. RNA secondary structure represents various significant portions of RNA tertiary structure. Since the biological function of RNA is concluded indirectly from its primary structure, it would be important to analyze the relations between the RNA sequences and t...
متن کاملRNA-MoIP: prediction of RNA secondary structure and local 3D motifs from sequence data
RNA structures are hierarchically organized. The secondary structure is articulated around sophisticated local three-dimensional (3D) motifs shaping the full 3D architecture of the molecule. Recent contributions have identified and organized recurrent local 3D motifs, but applications of this knowledge for predictive purposes is still in its infancy. We recently developed a computational framew...
متن کاملRAG: RNA-As-Graphs database-concepts, analysis, features
Motivation: Understanding RNA’s structural diversity is vital for identifying novel RNA structures and pursuing RNA genomics initiatives. By classifying RNA secondary motifs based on correlations between conserved RNA secondary structures and functional properties, we offer an avenue for predicting novel motifs. Although several RNA databases exist, no comprehensive schemes are available for ca...
متن کاملIn silico investigation of lactoferrin protein characterizations for the prediction of anti-microbial properties
Lactoferrin (Lf) is an iron-binding multi-functional glycoprotein which has numerous physiological functions such as iron transportation, anti-microbial activity and immune response. In this study, different in silico approaches were exploited to investigate Lf protein properties in a number of mammalian species. Results showed that the iron-binding site, DNA and RNA-binding sites, signal pepti...
متن کاملRAG: RNA-As-Graphs database--concepts, analysis, and features.
MOTIVATION Understanding RNA's structural diversity is vital for identifying novel RNA structures and pursuing RNA genomics initiatives. By classifying RNA secondary motifs based on correlations between conserved RNA secondary structures and functional properties, we offer an avenue for predicting novel motifs. Although several RNA databases exist, no comprehensive schemes are available for cat...
متن کامل